BEVITOR·伟德(中国)有限公司

{dede:global.cfg_webname/}
  • English
  • 官方微信
  • 首页
  • 栏目名称
    • 测试
  • 第二个
  • 首页
  • 关于我们
    • BEVITOR伟德简介
    • 历史沿革
    • 机构设置
    • 现任领导
    • 历任领导
    • 联系我们
  • 师资队伍
    • 全职教工
    • 讲座 兼职教授
    • 重要人才计划
    • 退休人员名单
  • 人才培养
    • 本科生培养
    • 硕士生培养
    • 博士生培养
  • 科学研究
    • 学术交流
    • 重点学科
    • 科研机构
    • 科研团队
    • 科研成果
    • 讨论班
  • 党团建设
    • 党建动态
    • 工会活动
    • 团学工作
  • 理论学习
    • 主题教育
  • 合作交流
    • 国际合作
    • 校际合作
    • 校企合作
  • 招生就业
    • 招生信息
    • 就业信息
    • 招生宣传
  • 校友之家
    • 校友组织
    • 校友基金
    • 校友活动
    • 百年院庆
  • 院务信箱

学术交流

  • 学术交流
  • 重点学科
  • 科研机构
  • 科研团队
  • 科研成果
  • 讨论班

学术交流

参数化卷积方法及其应用

日期:2024-01-30  来源:BEVITOR伟德  点击:[]

报告题目:参数化卷积方法及其应用

主讲人:谢琦

单位:西安交通大学

时间:2月1日15:00

腾讯ID:527-280-547

摘要:卷积算子是卷积网络核心,在现代深度学习领域发挥了重要的作用。然而,常用的离散形式卷积核无法灵活进行变换,功能上仍具有局限性,不适用于旋转与尺度不变性刻画、卷积核动态调整和非网格卷积等操作。参数化(连续化)卷积方法是克服上述问题的一个重要技术,因此具有重要的研究价值。现阶段参数化卷积方法研究处在起步阶段,仍有许多有待克服的不足之处,本报告将介绍一种适用于底层视觉任务的参数化卷积方法,并以旋转等变卷积算子的构造为代表,介绍一系列参数化卷积方法的应用。

简介:谢琦,西安交通大学BEVITOR伟德副教授,博导。于2013年7月和2020年12月分别获西安交通大学理学学士与理学博士学位。2017年8月至2018年9月曾赴普林斯顿大学访学。目前主要从事机器学习与计算机视觉的基础问题研究。在CCF A类期刊与会议发表论文18篇,IEEE Trans.论文14篇,其中以第一作者在领域顶刊TPAMI发表论文3篇;三篇论文入选ESI高被引论文。2015年至今,谷歌学术被引4233次,H指数为21。入选2022年CCF优秀博士学位论文激励计,曾获“2021年ACM中国优博提名奖”、“2023年陕西省优秀博士学位论文奖”、“VALSE年度最佳学生论文提名奖”、“徐宗本应用数学论文奖”等奖项。

上一条:Time-domain wave scattering problems from unbounded rough surfaces 下一条:非协调有限元方法(二)

【关闭】

友情链接

  • 学校教务处
  • 学校党委办公室
  • 学校校长办公室
  • 清华大学数学系
  • 浙江大学数学科学院
  • 上海大学数学系
版权所有:BEVITOR·伟德(中国)有限公司